Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Infect Genet Evol ; 81: 104270, 2020 07.
Article in English | MEDLINE | ID: covidwho-1452334

ABSTRACT

In the endemic settings of India, high CFR (3.6-7.02%) was observed in the consecutive 2009, 2015 and 2017 A/H1N1pdm09 outbreaks, though in eastern India CFR varied between 0 and 5.5% during same period. Recurrent outbreaks of pandemic Influenza A/H1N1pdm09, fragmented nationwide incidence data, lack of national policy for Influenza vaccination in India underscores the necessity for generating regional level data. Thus, during 2017-19, 4106 referred samples from patients hospitalized with severe acute respiratory illness (SARI) in eastern India were tested for A/H1N1pdm09 infection. Among which 16.5% (n = 677/4106) were found A/H1N1pdm09 positive. Individuals <20 years and middle-aged persons (40-60 years) were most susceptible to A/H1N1pdm09 infection. The vaccine strain (A/human/California/07/2009) which was globally used before 2017, clustered in a different lineage away from the representative eastern Indian strains in the phylogenetic dendrogram. The vaccine strain (A/human/Michigan/45/2015) used in India during the study period and the WHO recommended strain (A/human/Brisbane/02/2018) for 2019-20 flu season for the northern hemisphere, clustered with the circulating isolates in the same lineage-6b. Dissimilarities in the amino acids encompassing the antigenic epitopes were seen to be highest with the vaccine strain- A/human/California/07/2009. The significant amino acid variations in the circulating strains with the current WHO recommended vaccine strain, implies the exigency of continuous pandemic A/H1N1pdm09 surveillance studies in this epidemiological setting. The absence of any Oseltamivir resistant mutation (H275Y) in the neuraminidase gene of the current isolates suggests continuing use of Tamiflu® as an antiviral therapy in suspected subjects in this region.


Subject(s)
Antigenic Variation/genetics , Antigenic Variation/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Adolescent , Adult , Amino Acid Substitution/genetics , Amino Acid Substitution/immunology , Child , Child, Preschool , Drug Resistance, Viral/genetics , Female , Humans , India , Influenza, Human/virology , Male , Middle Aged , Neuraminidase/genetics , Oseltamivir/therapeutic use , Phylogeny , Viral Proteins/genetics , Young Adult
2.
ACS Sens ; 6(10): 3753-3764, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1440461

ABSTRACT

We developed a piecewise isothermal nucleic acid test (PINAT) as a platform technology for diagnosing pathogen-associated infections, empowered by an illustrative novel methodology that embeds an exclusive DNA-mediated specific probing reaction with the backbone of an isothermal reverse transcription cum amplification protocol for detecting viral RNA. In a point-of-care format, this test is executable in a unified single-step, single-chamber procedure, leading to seamless sample-to-result integration in an inexpensive, scalable, pre-programmable, and customizable portable device, with mobile-app-integrated interpretation and analytics involving minimal manually operative procedures. The test exhibited a high sensitivity and specificity of detection when assessed using 200 double-blind patient samples for detecting SARS-CoV-2 infection by the Indian Council of Medical Research (ICMR), and subsequently using 170 double-blind patient samples in a point-of-care format outside controlled laboratory settings as performed by unskilled technicians in an organized clinical trial. We also established its efficacy in detecting Influenza A infection by performing the diagnosis at the point of collection with uncompromised detection rigor. The envisaged trade-off between advanced laboratory-based molecular diagnostic procedures and the elegance of common rapid tests renders the method ideal for deployment in resource-limited settings towards catering the needs of the underserved.


Subject(s)
COVID-19 , Communicable Diseases , Humans , Point-of-Care Systems , RNA, Viral/genetics , SARS-CoV-2
3.
Arch Virol ; 166(3): 801-812, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1384461

ABSTRACT

Accumulation of mutations within the genome is the primary driving force in viral evolution within an endemic setting. This inherent feature often leads to altered virulence, infectivity and transmissibility, and antigenic shifts to escape host immunity, which might compromise the efficacy of vaccines and antiviral drugs. Therefore, we carried out a genome-wide analysis of circulating SARS-CoV-2 strains to detect the emergence of novel co-existing mutations and trace their geographical distribution within India. Comprehensive analysis of whole genome sequences of 837 Indian SARS-CoV-2 strains revealed the occurrence of 33 different mutations, 18 of which were unique to India. Novel mutations were observed in the S glycoprotein (6/33), NSP3 (5/33), RdRp/NSP12 (4/33), NSP2 (2/33), and N (1/33). Non-synonymous mutations were found to be 3.07 times more prevalent than synonymous mutations. We classified the Indian isolates into 22 groups based on their co-existing mutations. Phylogenetic analysis revealed that the representative strains of each group were divided into various sub-clades within their respective clades, based on the presence of unique co-existing mutations. The A2a clade was found to be dominant in India (71.34%), followed by A3 (23.29%) and B (5.36%), but a heterogeneous distribution was observed among various geographical regions. The A2a clade was highly predominant in East India, Western India, and Central India, whereas the A2a and A3 clades were nearly equal in prevalence in South and North India. This study highlights the divergent evolution of SARS-CoV-2 strains and co-circulation of multiple clades in India. Monitoring of the emerging mutations will pave the way for vaccine formulation and the design of antiviral drugs.


Subject(s)
COVID-19/virology , Genetic Variation/genetics , Genome, Viral/genetics , SARS-CoV-2/genetics , Evolution, Molecular , Geography , Humans , India/epidemiology , Mutation/genetics , Mutation Rate , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Silent Mutation/genetics , Whole Genome Sequencing
4.
JMIR Bioinform Biotech ; 1(1): e20735, 2020.
Article in English | MEDLINE | ID: covidwho-791479

ABSTRACT

BACKGROUND: The RNA genome of the emerging novel coronavirus is rapidly mutating, and its human-to-human transmission rate is increasing. Hence, temporal dissection of their evolutionary dynamics, the nature of variations among different strains, and understanding the single nucleotide polymorphisms in the endemic settings are crucial. Delineating the heterogeneous genomic constellations of this novel virus will help us understand its complex behavior in a particular geographical region. OBJECTIVE: This is a comprehensive analysis of 95 Indian SARS-CoV-2 genome sequences available from the Global Initiative on Sharing All Influenza Data (GISAID) repository during the first 6 months of 2020 (January through June). Evolutionary dynamics, gene-specific phylogeny, and the emergence of the novel coevolving mutations in 9 structural and nonstructural genes among circulating SARS-CoV-2 strains across 12 different Indian states were analyzed. METHODS: A total of 95 SARS-CoV-2 nucleotide sequences submitted from India were downloaded from the GISAID database. Molecular Evolutionary Genetics Analysis, version X software was used to construct the 9 phylogenetic dendrograms based on nucleotide sequences of the SARS-CoV-2 genes. Analyses of the coevolving mutations were done in comparison to the prototype SARS-CoV-2 from Wuhan, China. The secondary structure of the RNA-dependent RNA polymerase/nonstructural protein NSP12 was predicted with respect to the novel A97V mutation. RESULTS: Phylogenetic analyses revealed the evolution of "genome-type clusters" and adaptive selection of "L"-type SARS-CoV-2 strains with genetic closeness to the bat severe acute respiratory syndrome-like coronaviruses. These strains were distant to pangolin or Middle East respiratory syndrome-related coronavirus strains. With regard to the novel coevolving mutations, 2 groups have been seen circulating in India at present, the "major group" (66/95, 69.4%) and the "minor group" (21/95, 22.1%) , harboring 4 and 5 coexisting mutations, respectively. The "major group" mutations fall in the A2a clade. All the minor group mutations, except 11083G>T (L37F, NSP6 gene), were unique to the Indian isolates. CONCLUSIONS: This study highlights the rapidly evolving SARS-CoV-2 virus and the cocirculation of multiple clades and subclades. This comprehensive study is a potential resource for monitoring the novel mutations in the viral genome, interpreting changes in viral pathogenesis, and designing vaccines or other therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL